-
python基础教程之集成学习之AdaBoost算法(4)
所以此轮优化目标就为:
求解上式即可得到第个基分类器及其权重。
这样,前向分步算法就通过不断迭代求得了从到的所有基分类器及其权重,问题得到了解决。
上面主要介绍了前向分步算法逐一学习基学习器,这一过程也即AdaBoost算法逐一学习基学习器的过程。下面将证明前向分步算法的损失函数是指数损失函数(exponential loss function)时,AdaBoost学习的具体步骤。
首先指数损失函数即,指数损失函数是分类任务原本0/1损失函数的一致(consistent)替代损失函数,由于指数损失函数有更好的数学性质,例如处处可微,所以我们用它替代0/1损失作为优化目标。
AdaBoost是采用指数损失,由此可以得到损失函数:
因为与优化变量和无关,所以令
栏目列表
最新更新
如何使用OS模块中的stat方法
Python os 模块
seek() 方法
python打开文件实例1
Python写入文件
什么是流?
文件操作如何进制逐行读取
Python相对路径
with创建临时运行环境
Python文件操作
.Net Standard(.Net Core)实现获取配置信息
Linux PXE + Kickstart 自动装机
Shell 编程 基础
Shell 编程 条件语句
CentOS8-网卡配置及详解
Linux中LVM逻辑卷管理
1.数码相框-相框框架分析(1)
Ubuntu armhf 版本国内源
Linux中raid磁盘阵列
搭建简易网站
access教程之Access简介
mysql 安装了最新版本8.x版本后的报错:
Mysql空间数据&空间索引(spatial)
如何远程连接SQL Server数据库的图文教程
复制SqlServer数据库的方法
搜索sql语句
sql中返回参数的值
sql中生成查询的模糊匹配字符串
数据定义功能
数据操作功能