VB.net 2010 视频教程 VB.net 2010 视频教程 python基础视频教程
SQL Server 2008 视频教程 c#入门经典教程 Visual Basic从门到精通视频教程
当前位置:
首页 > Python基础教程 >
  • NumPy 舍入小数、对数、求和和乘积运算详解

舍入小数
在 NumPy 中,主要有五种方法来舍入小数:

截断
去除小数部分,并返回最接近零的浮点数。使用 trunc() 和 fix() 函数。

示例:

import numpy as np

arr = np.trunc([-3.1666, 3.6667])

print(arr)
相同的示例,使用 fix():

import numpy as np

arr = np.fix([-3.1666, 3.6667])

print(arr)
四舍五入
around() 函数在数字大于或等于 5 时将前面的数字或小数部分加 1。

例如:将数字四舍五入到 1 个小数位,3.16666 是 3.2。

示例:

import numpy as np

arr = np.around(3.1666, 2)

print(arr)
向下取整
floor() 函数将小数舍入到最接近的较低整数。

例如:3.166 的 floor 是 3。

示例:

import numpy as np

arr = np.floor([-3.1666, 3.6667])

print(arr)
向上取整
ceil() 函数将小数舍入到最接近的较高整数。

例如:3.166 的 ceil 是 4。

示例:

import numpy as np

arr = np.ceil([-3.1666, 3.6667])

print(arr)
NumPy 对数
NumPy 提供了在底数为 2、e 和 10 的情况下执行对数运算的函数。

我们还将探讨如何通过创建自定义的 ufunc 来以任意底数取对数。

如果无法计算对数,所有的对数函数都会在元素中放置 -inf 或 inf。

底数为 2 的对数
使用 log2() 函数执行底数为 2 的对数运算。

示例:

import numpy as np

arr = np.arange(1, 10)

print(np.log2(arr))
注意:arange(1, 10) 函数返回一个从 1(包括)到 10(不包括)的整数数组。

底数为 10 的对数
使用 log10() 函数执行底数为 10 的对数运算。

示例:

import numpy as np

arr = np.arange(1, 10)

print(np.log10(arr))
自然对数,即底数为 e 的对数
使用 log() 函数执行底数为 e 的对数运算。

示例:

import numpy as np

arr = np.arange(1, 10)

print(np.log(arr))
任意底数的对数
NumPy 不提供任意底数的对数函数,所以我们可以使用 frompyfunc() 函数结合内置函数 math.log(),它有两个输入参数和一个输出参数:

示例:

from math import log
import numpy as np

nplog = np.frompyfunc(log, 2, 1)

print(nplog(100, 15))
NumPy 求和
求和和加法有什么区别?

加法是在两个参数之间进行操作,而求和是在 n 个元素上进行操作。

示例:
import numpy as np

arr1 = np.array([1, 2, 3])
arr2 = np.array([1, 2, 3])

newarr = np.add(arr1, arr2)

print(newarr)
返回:[2 4 6]

示例
对 arr1 和 arr2 中的值进行求和:

import numpy as np

arr1 = np.array([1, 2, 3])
arr2 = np.array([1, 2, 3])

newarr = np.sum([arr1, arr2])

print(newarr)
返回:12

沿轴求和
如果指定 axis=1,则 NumPy 将对每个数组中的数字进行求和。

示例
在以下数组上沿第一个轴执行求和:

import numpy as np

arr1 = np.array([1, 2, 3])
arr2 = np.array([1, 2, 3])

newarr = np.sum([arr1, arr2], axis=1)

print(newarr)
返回:[6 6]

累积求和
累积求和意味着部分地对数组中的元素进行相加。

例如:[1, 2, 3, 4] 的部分和将是 [1, 1+2, 1+2+3, 1+2+3+4] = [1, 3, 6, 10]。

使用 cumsum() 函数执行部分求和。

示例
在以下数组中执行累积求和:

import numpy as np

arr = np.array([1, 2, 3])

newarr = np.cumsum(arr)

print(newarr)
返回:[1 3 6]

NumPy 乘积
要找到数组中元素的乘积,使用 prod() 函数。

示例:
import numpy as np

arr = np.array([1, 2, 3, 4])

x = np.prod(arr)

print(x)
返回:24,因为 123*4 = 24

示例
找到两个数组中元素的乘积:

import numpy as np

arr1 = np.array([1, 2, 3, 4])
arr2 = np.array([5, 6, 7, 8])

x = np.prod([arr1, arr2])

print(x)
返回:40320,因为 1234567*8 = 40320

沿轴的乘积
如果指定 axis=1,则 NumPy 将返回每个数组的乘积。

示例
在以下数组上沿第一个轴执行乘积:

import numpy as np

arr1 = np.array([1, 2, 3, 4])
arr2 = np.array([5, 6, 7, 8])

newarr = np.prod([arr1, arr2], axis=1)

print(newarr)
返回:[24 1680]

累积乘积
累积乘积意味着部分地进行乘法。

例如:[1, 2, 3, 4] 的部分乘积是 [1, 12, 123, 1234] =[1, 2, 6, 24]`

使用 cumprod() 函数执行部分乘积。

示例
对以下数组中所有元素进行累积乘积:

import numpy as np

arr = np.array([5, 6, 7, 8])

newarr = np.cumprod(arr)

print(newarr)
返回:[5 30 210 1680]

来源:https://www.cnblogs.com/xiaowange/p/18244688


相关教程
关于我们--广告服务--免责声明--本站帮助-友情链接--版权声明--联系我们       黑ICP备17003004号-1