当前位置:
首页 > temp > 简明python教程 >
-
深度学习-卷积
1.简述人工智能、机器学习和深度学习三者的联系与区别。
人工智能:机器学习和深度学习都是属于一个领域的一个子集。但是人工智能是机器学习的首要范畴。机器学习是深度学习的首要范畴。
机器学习:是人工智能的子领域,也是人工智能的核心。它包括了几乎所有对世界影响最大的方法(包括深度学习)。机器学习理论主要是设计和分析一些让计算机可以自动学习的算法。
深度学习:属于机器学习的子类。利用深度神经网络来解决特征表达的一种学习过程
深度学习是机器学习的一个子集,机器学习是人工智能的一个子集
2. 全连接神经网络与卷积神经网络的联系与区别。
联系:
除了结构相似,卷积神经网络的输入输出以及训练的流程和全连接神经网络也基本一致,以图像分类为列,卷积神经网络的输入层就是图像的原始图像,而输出层中的每一个节点代表了不同类别的可信度。这和全连接神经网络的输入输出是一致的。
区别:
每一次feature map的输入过来必须都得是一定的大小(即与权重矩阵正好可以相乘的大小),所以网络最开始的输入图像尺寸必须固定,才能保证传送到全连接层的feature map的大小跟全连接层的权重矩阵匹配。
卷积层就不需要固定大小了,因为它只是对局部区域进行窗口滑动
3.理解卷积计算。
以digit0为例,进行手工演算。
from sklearn.datasets import load_digits #小数据集8*8
digits = load_digits()
4.理解卷积如何提取图像特征。
读取一个图像;
以下矩阵为卷积核进行卷积操作;
显示卷积之后的图像,观察提取到什么特征。
卷积API
scipy.signal.convolve2d
tf.keras.layers.Conv2D
栏目列表
最新更新
nodejs爬虫
Python正则表达式完全指南
爬取豆瓣Top250图书数据
shp 地图文件批量添加字段
爬虫小试牛刀(爬取学校通知公告)
【python基础】函数-初识函数
【python基础】函数-返回值
HTTP请求:requests模块基础使用必知必会
Python初学者友好丨详解参数传递类型
如何有效管理爬虫流量?
2个场景实例讲解GaussDB(DWS)基表统计信息估
常用的 SQL Server 关键字及其含义
动手分析SQL Server中的事务中使用的锁
openGauss内核分析:SQL by pass & 经典执行
一招教你如何高效批量导入与更新数据
天天写SQL,这些神奇的特性你知道吗?
openGauss内核分析:执行计划生成
[IM002]Navicat ODBC驱动器管理器 未发现数据
初入Sql Server 之 存储过程的简单使用
SQL Server -- 解决存储过程传入参数作为s
关于JS定时器的整理
JS中使用Promise.all控制所有的异步请求都完
js中字符串的方法
import-local执行流程与node模块路径解析流程
检测数据类型的四种方法
js中数组的方法,32种方法
前端操作方法
数据类型
window.localStorage.setItem 和 localStorage.setIte
如何完美解决前端数字计算精度丢失与数