当前位置:
首页 > temp > 简明python教程 >
-
集成学习之Xgboost(5)
棵树模型对样本的预测结果。
表示组合3. 树的结构与复杂度:
从单一的树来考虑。对于其中每一棵回归树,其模型可以写成:
树拆分成结构部分和叶子权重部分,其中为叶子节点的得分值,表示样本对应的叶子节点。为该树的叶子节点个数。
Xgboost对树的复杂度包含了两个部分:(1)一个是树里面叶子节点的个数;(2)一个是树上叶子节点的得分的模平方(对进行正则化,相当于针对每个叶结点的得分增加平滑,目的是为了避免过拟合)。
因此可以将该树的复杂度写成:
其中,为正则的惩罚项,为正则的惩罚项。
树的复杂度函数和样例:
定义树的结构和复杂度的原因很简单,这样就可以衡量模型的复杂度了啊,从而可以有效控制过拟合。
4. Xgboost中的boosting tree模型:
例如要预测一家人对电子游戏的喜好程度,考虑到年轻和年老相比,年轻更可能喜欢电子游戏,以及男性和女性相比,男性更喜欢电子游戏,故先根据年龄大小区分小孩和大人,然后再通过性别区分开是男是女,逐一给各人在电子游戏喜好程度上打分,如下图所示:
看上图训练出2棵树tree1和tree2,类似之前GBDT的原理(Xgboost与GBDT比较大的不同就是目标函数的定义,下文会具体介绍),两棵树的结论累加起来便是最终的结论,所以小孩的预测分数就是两棵树中小孩所落到的结点的分数相加:2 + 0.9 = 2.9。爷爷的预测分数同理:-1 + (-0.9)= -1.9。
和传统的boosting tree模型一样,Xgboost的提升模型也是采用的残差(或梯度负方向),不同的是分裂结点选取的时候不一定是最小平方损失。
5. Xgboost目标/损失函数:
因为XGBoost也是集成学习方法的一种,所以预测模型和损失函数都可用上式表示。
XGBoost预测模型:
栏目列表
最新更新
nodejs爬虫
Python正则表达式完全指南
爬取豆瓣Top250图书数据
shp 地图文件批量添加字段
爬虫小试牛刀(爬取学校通知公告)
【python基础】函数-初识函数
【python基础】函数-返回值
HTTP请求:requests模块基础使用必知必会
Python初学者友好丨详解参数传递类型
如何有效管理爬虫流量?
2个场景实例讲解GaussDB(DWS)基表统计信息估
常用的 SQL Server 关键字及其含义
动手分析SQL Server中的事务中使用的锁
openGauss内核分析:SQL by pass & 经典执行
一招教你如何高效批量导入与更新数据
天天写SQL,这些神奇的特性你知道吗?
openGauss内核分析:执行计划生成
[IM002]Navicat ODBC驱动器管理器 未发现数据
初入Sql Server 之 存储过程的简单使用
SQL Server -- 解决存储过程传入参数作为s
关于JS定时器的整理
JS中使用Promise.all控制所有的异步请求都完
js中字符串的方法
import-local执行流程与node模块路径解析流程
检测数据类型的四种方法
js中数组的方法,32种方法
前端操作方法
数据类型
window.localStorage.setItem 和 localStorage.setIte
如何完美解决前端数字计算精度丢失与数