当前位置:
首页 > Python基础教程 >
-
python基础教程之Python 建模步骤
#%% #载入数据 、查看相关信息 import pandas as pd import numpy as np from sklearn.preprocessing import LabelEncoder print('第一步:加载、查看数据') file_path = r'D:\train\201905data\liwang.csv' band_data = pd.read_csv(file_path,encoding='UTF-8') band_data.info() band_data.shape #%% # print('第二步:清洗、处理数据,某些数据可以使用数据库处理数据代替') #数据清洗:缺失值处理:丢去、 #查看缺失值 band_data.isnull().sum band_data = band_data.dropna() #band_data = band_data.drop(['state'],axis=1) # 去除空格 band_data['voice_mail_plan'] = band_data['voice_mail_plan'].map(lambda x: x.strip()) band_data['intl_plan'] = band_data['intl_plan'].map(lambda x: x.strip()) band_data['churned'] = band_data['churned'].map(lambda x: x.strip()) band_data['voice_mail_plan'] = band_data['voice_mail_plan'].map({'no':0, 'yes':1}) band_data.intl_plan = band_data.intl_plan.map({'no':0, 'yes':1}) for column in band_data.columns: if band_data[column].dtype == type(object): le = LabelEncoder() band_data[column] = le.fit_transform(band_data[column]) #band_data = band_data.drop(['phone_number'],axis=1) #band_data['churned'] = band_data['churned'].replace([' True.',' False.'],[1,0]) #band_data['intl_plan'] = band_data['intl_plan'].replace([' yes',' no'],[1,0]) #band_data['voice_mail_plan'] = band_data['voice_mail_plan'].replace([' yes',' no'],[1,0]) #%% # 模型 [重复、调优] print('第三步:选择、训练模型') x = band_data.drop(['churned'],axis=1) y = band_data['churned'] from sklearn import model_selection train,test,t_train,t_test = model_selection.train_test_split(x,y,test_size=0.3,random_state=1) from sklearn import tree model = tree.DecisionTreeClassifier(max_depth=2) model.fit(train,t_train) fea_res = pd.DataFrame(x.columns,columns=['features']) fea_res['importance'] = model.feature_importances_ t_name= band_data['churned'].value_counts() t_name.index import graphviz import os os.environ["PATH"] += os.pathsep + r'D:\software\developmentEnvironment\graphviz-2.38\release\bin' dot_data= tree.export_graphviz(model,out_file=None,feature_names=x.columns,max_depth=2, class_names=t_name.index.astype(str), filled=True, rounded=True, special_characters=False) graph = graphviz.Source(dot_data) #graph graph.render("dtr") #%% print('第四步:查看、分析模型') #结果预测 res = model.predict(test) #混淆矩阵 from sklearn.metrics import confusion_matrix confmat = confusion_matrix(t_test,res) print(confmat) #分类指标 https://blog.csdn.net/akadiao/article/details/78788864 from sklearn.metrics import classification_report print(classification_report(t_test,res)) #%% print('第五步:保存模型') from sklearn.externals import joblib joblib.dump(model,r'D:\train\201905data\mymodel.model') #%% print('第六步:加载新数据、使用模型') file_path_do = r'D:\train\201905data\do_liwang.csv' deal_data = pd.read_csv(file_path_do,encoding='UTF-8') #数据清洗:缺失值处理 deal_data = deal_data.dropna() deal_data['voice_mail_plan'] = deal_data['voice_mail_plan'].map(lambda x: x.strip()) deal_data['intl_plan'] = deal_data['intl_plan'].map(lambda x: x.strip()) deal_data['churned'] = deal_data['churned'].map(lambda x: x.strip()) deal_data['voice_mail_plan'] = deal_data['voice_mail_plan'].map({'no':0, 'yes':1}) deal_data.intl_plan = deal_data.intl_plan.map({'no':0, 'yes':1}) for column in deal_data.columns: if deal_data[column].dtype == type(object): le = LabelEncoder() deal_data[column] = le.fit_transform(deal_data[column]) #数据清洗 #加载模型 model_file_path = r'D:\train\201905data\mymodel.model' deal_model = joblib.load(model_file_path) #预测 res = deal_model.predict(deal_data.drop(['churned'],axis=1)) #%% print('第七步:执行模型,提供数据') result_file_path = r'D:\train\201905data\result_liwang.csv' deal_data.insert(1,'pre_result',res) deal_data[['state','pre_result']].to_csv(result_file_path,sep=',',index=True,encoding='UTF-8')
栏目列表
最新更新
nodejs爬虫
Python正则表达式完全指南
爬取豆瓣Top250图书数据
shp 地图文件批量添加字段
爬虫小试牛刀(爬取学校通知公告)
【python基础】函数-初识函数
【python基础】函数-返回值
HTTP请求:requests模块基础使用必知必会
Python初学者友好丨详解参数传递类型
如何有效管理爬虫流量?
SQL SERVER中递归
2个场景实例讲解GaussDB(DWS)基表统计信息估
常用的 SQL Server 关键字及其含义
动手分析SQL Server中的事务中使用的锁
openGauss内核分析:SQL by pass & 经典执行
一招教你如何高效批量导入与更新数据
天天写SQL,这些神奇的特性你知道吗?
openGauss内核分析:执行计划生成
[IM002]Navicat ODBC驱动器管理器 未发现数据
初入Sql Server 之 存储过程的简单使用
这是目前我见过最好的跨域解决方案!
减少回流与重绘
减少回流与重绘
如何使用KrpanoToolJS在浏览器切图
performance.now() 与 Date.now() 对比
一款纯 JS 实现的轻量化图片编辑器
关于开发 VS Code 插件遇到的 workbench.scm.
前端设计模式——观察者模式
前端设计模式——中介者模式
创建型-原型模式